Probabilistic methods in hyperbolic geometry

Joint with Thomas Budzinski & Nicolas Curien, Maxime Fortier Bourque, Mingkun Liu

Bram Petri

Knot Theory Informed by Random Models and Experimental Data

April 2, 2024

Extremal problems:

Definition: X a closed hyperbolic d-manifold.

- The systole: the length of the shortest closed geodesic and the kissing number: the number of geodesics realizing it,
- the $\underline{\text{diameter}}$:

$$\operatorname{diam}(X) = \max\{d(x, y); \ x, y \in X\},\$$

• the Cheeger constant (or isoperimetric constant):

$$h(X) = \inf \left\{ \frac{\operatorname{vol}_{d-1}(\partial Y)}{\operatorname{vol}_d(Y)}; \quad \begin{array}{l} Y \subset X \text{ submanifold} \\ \operatorname{vol}_d(Y) \leq \operatorname{vol}(X)/2 \end{array} \right\},$$

Extremal problems:

Definition: X a closed hyperbolic d-manifold.

- The systole: the length of the shortest closed geodesic and the kissing number: the number of geodesics realizing it,
- the $\underline{\text{diameter}}$:

$$\operatorname{diam}(X) = \max\{d(x, y); \ x, y \in X\},\$$

• the Cheeger constant (or isoperimetric constant):

$$h(X) = \inf \left\{ \frac{\operatorname{vol}_{d-1}(\partial Y)}{\operatorname{vol}_d(Y)}; \quad \begin{array}{l} Y \subset X \text{ submanifold} \\ \operatorname{vol}_d(Y) \leq \operatorname{vol}(X)/2 \end{array} \right\},$$

• the spectral gap: the smallest non-zero eigenvalue of $\Delta = -\text{div} \circ \text{grad} : C^{\infty}(X) \to C^{\infty}(X)$ and its <u>multiplicity</u>.

Fix the dimension $d \geq 2$.

Hyperbolic packing and kissing number problems:

 $\max\{\operatorname{sys}(X); \operatorname{vol}(X) \le v\}$ and $\max\{\operatorname{kiss}(X); \operatorname{vol}(X) \le v\}$?

Fix the dimension $d \geq 2$.

Hyperbolic packing and kissing number problems:

 $\max\{\operatorname{sys}(X); \operatorname{vol}(X) \le v\}$ and $\max\{\operatorname{kiss}(X); \operatorname{vol}(X) \le v\}$?

Covering problem:

 $\min\{\operatorname{diam}(X); \operatorname{vol}(X) \ge v\} \quad ?$

Fix the dimension $d \geq 2$.

Hyperbolic packing and kissing number problems:

 $\max\{\operatorname{sys}(X); \operatorname{vol}(X) \le v\}$ and $\max\{\operatorname{kiss}(X); \operatorname{vol}(X) \le v\}$?

Covering problem:

 $\min\{\operatorname{diam}(X); \operatorname{vol}(X) \ge v\} \quad ?$

Isoperimetric problem:

 $\sup\{h(X); \operatorname{vol}(X) \ge v\} \quad ?$

Fix the dimension $d \geq 2$.

Hyperbolic packing and kissing number problems:

 $\max\{\operatorname{sys}(X); \operatorname{vol}(X) \le v\}$ and $\max\{\operatorname{kiss}(X); \operatorname{vol}(X) \le v\}$?

Covering problem:

 $\min\{\operatorname{diam}(X); \operatorname{vol}(X) \ge v\} \quad ?$

Isoperimetric problem:

 $\sup\{h(X); \operatorname{vol}(X) \ge v\} \quad ?$

Spectral problems:

 $\sup\{\lambda_1(X); \operatorname{vol}(X) \ge v\} \quad \text{and} \quad \max\{m_1(X); \operatorname{vol}(X) \le v\} \quad ?$

Lots of previous work: Huber '74, Cheng '75, Huber '76, Buser '77, Huber '80, Yang-Yau '80, Jenni '84, Burger Colbois '85, Brooks '88, Burger-Buser-Dodziuk '88, Colbois-Colin-de-Verdière '88, Burger '90, Schmutz '93, Schmutz '94, Buser-Sarnak '94, Bavard '96, Bavard '97, Schmutz-Schaller '97, Adams '98, Hamendstädt '01, Hamenstädt-Koch '02, Kim-Sarnak '03, Casamayou-Boucau '05, Katz-Schaps-Vishne '07, Otal '08, Gendulphe '09, Otal-Rosas '09, Parlier '13, Strohmaier-Uski '13, Fanoni-Parlier '15, Gendulphe '15, Cook '18, Petri-Walker '18, Petri '18, Hide-Magee '21, Jammes '21, Bonifacio '21, Kravchuk-Mazac-Pal '21, Wu-Xue '21, Lipnowski-Wright '21, Fortier Bourque-Rafi '22, Magee-Naud-Puder '22, Anantharaman-Monk '23, and many others.

Known maximizers:

	Systole	Kissing number	λ_1	m ₁
genus 2	Bolza surface [Jenni '84]	Bolza surface 24, [Schmutz '94]	Conjecture: Bolza surface	Conjecture: Bolza surface
genus 3	Conjecture: Picard curve	Conjecture: Picard curve	Conjecture: Klein quartic	Klein quartic [Fortier Bourque -P. '24+]
higher genus	Local maximizers [Schmutz '99] [Hamenstädt '01] [Fortier Bourque –Rafi '22]			

The Bolza surface

The Klein quartic

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6)\text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6)\text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2\log(g) + 2.772588 \dots + o(1)$$

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6)\text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2\log(g) + 2.772588 \dots + o(1)$$

<u>Proof:</u> take $x \in X$

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6) \text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2 \log(g) + 2.772588 \ldots + o(1)$$

<u>Proof:</u> take $x \in X$

The open disk $D_{\text{sys}(X)/2}(x)$ is isometric to a disk of the same radius in the hyperbolic plane.

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6) \text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2 \log(g) + 2.772588 \ldots + o(1)$$

<u>Proof:</u> take $x \in X$

The open disk $D_{\text{sys}(X)/2}(x)$ is isometric to a disk of the same radius in the hyperbolic plane. So:

 $2\pi(\cosh(\text{sys}(X)/2) - 1) = \operatorname{area}(D_{\text{sys}(X)/2}(x)) \le \operatorname{area}(X) = 4\pi(g - 1).$

 \square

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6)\text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2\log(g) + 2.772588 \dots + o(1)$$

[Bavard '96]:

$$sys(X) \le 2arccosh\left(\frac{1}{2\sin(\pi/(12g-6))}\right) \stackrel{g \to \infty}{=} 2\log(g) + 2.68353... + o(1)$$

The systole:

Facts: the moduli space $\mathcal{M}_g = \left\{ \begin{array}{c} \text{closed orientable hyperbolic} \\ \text{surfaces of genus } g \end{array} \right\} / \text{isometry is a } (6g-6) \text{-dimensional orbifold.}$

- The systole admits a maximum on \mathcal{M}_g for all $g \geq 2$ [Mumford '71].
- Moreover, it's a topological Morse function [Akrout '03].

Lemma: Let $X \in \mathcal{M}_g$. Then

$$\operatorname{sys}(X) \le 4 \cdot \operatorname{arcsinh}(\sqrt{g-1}) \stackrel{g \to \infty}{=} 2\log(g) + 2.772588 \ldots + o(1)$$

[Bavard '96]:

$$sys(X) \le 2 \operatorname{arccosh}\left(\frac{1}{2\sin(\pi/(12g-6))}\right) \stackrel{g \to \infty}{=} 2\log(g) + 2.68353\ldots + o(1)$$

[Fortier Bourque–P '23]:

$$\operatorname{sys}(X) \stackrel{g \to \infty}{\leq} 2\log(g) + 2.409 \dots + o(1)$$

[Fortier Bourque–P '23]:

Open question: Does

$$\lim_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)}$$

exist?

Open question: Does

$$\lim_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)}$$

exist?

[Brooks '88, Buser–Sarnak '94]

$$\limsup_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{4}{3}$$

and the limit infimum is strictly positive.

Open question: Does

$$\lim_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)}$$

exist?

[Brooks '88, Buser–Sarnak '94]

$$\limsup_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{4}{3}$$

and the limit infimum is strictly positive.

[Katz–Sabourau '24]

$$\liminf_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{19}{120}$$

with $\mathbf{Mingkun}\ \mathbf{Liu}$

with Mingkun Liu

Bad news: In the "usual models", the systole converges to a finite random variable [P. '17, Mirzakhani–P. '19, Magee–Naud–Puder '21, Puder–Zimhoni '22]

with Mingkun Liu

Bad news: In the "usual models", the systole converges to a finite random variable [P. '17, Mirzakhani–P. '19, Magee–Naud–Puder '21, Puder–Zimhoni '22]

Theorem [Liu–P. '23]: There are models that show logarithmic growth.

Random constructions?

with Mingkun Liu

Bad news: In the "usual models", the systole converges to a finite random variable [P. '17, Mirzakhani–P. '19, Magee–Naud–Puder '21, Puder–Zimhoni '22]

Theorem [Liu–P. '23]: There are models that show logarithmic growth.

Corollary:

$$\liminf_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{2}{9}$$

with Mingkun Liu

Bad news: In the "usual models", the systole converges to a finite random variable [P. '17, Mirzakhani–P. '19, Magee–Naud–Puder '21, Puder–Zimhoni '22]

Theorem [Liu–P. '23]: There are models that show logarithmic growth.

Corollary:

$$\liminf_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{2}{9}$$

<u>Proof idea:</u> Randomly build a surface $X_g \in \mathcal{M}_g$ with

$$\operatorname{sys}(X_g) \ge \left(\frac{2}{9} + o(1)\right) \cdot \log(g).$$

with Mingkun Liu

Bad news: In the "usual models", the systole converges to a finite random variable [P. '17, Mirzakhani–P. '19, Magee–Naud–Puder '21, Puder–Zimhoni '22]

Theorem [Liu–P. '23]: There are models that show logarithmic growth.

Corollary:

$$\liminf_{g \to \infty} \frac{\max\{\operatorname{sys}(X); \ X \in \mathcal{M}_g\}}{\log(g)} \ge \frac{2}{9}$$

<u>Proof idea:</u> Randomly build a surface $X_g \in \mathcal{M}_g$ with

$$\operatorname{sys}(X_g) \ge \left(\frac{2}{9} + o(1)\right) \cdot \log(g).$$

Based on random triangulations combined with ideas inspired by graph theory [Linial-Simkin '21].

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups.

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups. Write $X = \Gamma \setminus \mathbb{H}^2$, such that $\Gamma \simeq \pi_1(X)$. Take

$$\varphi_n \in \operatorname{Hom}(\Gamma, G_n) = \left\{ A_1, B_1, \dots, A_g, B_g \in G_n; \prod_{i=1}^g [A_i, B_i] = e \right\}$$

uniformly at random.

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups. Write $X = \Gamma \setminus \mathbb{H}^2$, such that $\Gamma \simeq \pi_1(X)$. Take

$$\varphi_n \in \operatorname{Hom}(\Gamma, G_n) = \left\{ A_1, B_1, \dots, A_g, B_g \in G_n; \prod_{i=1}^g [A_i, B_i] = e \right\}$$

uniformly at random. Get a random regular cover

$$X_n = \ker(\varphi_n) \backslash \mathbb{H}^2 \quad \to \quad X_n$$

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups. Write $X = \Gamma \setminus \mathbb{H}^2$, such that $\Gamma \simeq \pi_1(X)$. Take

$$\varphi_n \in \operatorname{Hom}(\Gamma, G_n) = \left\{ A_1, B_1, \dots, A_g, B_g \in G_n; \prod_{i=1}^g [A_i, B_i] = e \right\}$$

uniformly at random. Get a random regular cover

$$X_n = \ker(\varphi_n) \backslash \mathbb{H}^2 \quad \to \quad X$$

Analogous model to random Cayley graphs [Gamburd-Hoory-Shahshahani-Shalev-Virág '07]

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups. Write $X = \Gamma \setminus \mathbb{H}^2$, such that $\Gamma \simeq \pi_1(X)$. Take

$$\varphi_n \in \operatorname{Hom}(\Gamma, G_n) = \left\{ A_1, B_1, \dots, A_g, B_g \in G_n; \prod_{i=1}^g [A_i, B_i] = e \right\}$$

uniformly at random. Get a random regular cover

$$X_n = \ker(\varphi_n) \backslash \mathbb{H}^2 \quad \to \quad X$$

Analogous model to random Cayley graphs [Gamburd–Hoory–Shahshahani–Shalev–Virág '07] Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \longrightarrow 1.$$

Set up: X a closed hyperbolic surface and $(G_n)_n$ sequence of finite groups. Write $X = \Gamma \setminus \mathbb{H}^2$, such that $\Gamma \simeq \pi_1(X)$. Take

$$\varphi_n \in \operatorname{Hom}(\Gamma, G_n) = \left\{ A_1, B_1, \dots, A_g, B_g \in G_n; \prod_{i=1}^g [A_i, B_i] = e \right\}$$

uniformly at random. Get a random regular cover

$$X_n = \ker(\varphi_n) \backslash \mathbb{H}^2 \quad \to \quad X$$

Analogous model to random Cayley graphs [Gamburd–Hoory–Shahshahani–Shalev–Virág '07] Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \longrightarrow 1.$$

Open problem: Is a similar statement true for symmetric groups?

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \longrightarrow 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \le R\right) \le \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}:\\ \ell(\gamma) \le R}} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \quad \longrightarrow \quad 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \le R\right) \le \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}: \\ \ell(\gamma)} \le R} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$
$$= \sum_{[\gamma]} \frac{\#\left\{\varphi_p \in \operatorname{Hom}(\Gamma, G_p); \ \varphi_p(\gamma) = e\right\}}{\#\operatorname{Hom}(\Gamma, G_p)}$$

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \quad \longrightarrow \quad 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \leq R\right) \leq \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}: \leq R\\ \ell(\gamma)}} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$
$$= \sum_{[\gamma]} \frac{\#\left\{\varphi_p \in \operatorname{Hom}(\Gamma, G_p); \ \varphi_p(\gamma) = e\right\}}{\#\operatorname{Hom}(\Gamma, G_p)}$$

Main ingredients:

• If V is an algebraic variety defined of $\mathbb{Z}/p\mathbb{Z}$ for all p, then $\#V(\mathbb{Z}/p\mathbb{Z}) \approx p^{\dim(V)}$.

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \quad \longrightarrow \quad 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \leq R\right) \leq \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}: \leq R\\ \ell(\gamma)}} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$
$$= \sum_{[\gamma]} \frac{\#\left\{\varphi_p \in \operatorname{Hom}(\Gamma, G_p); \ \varphi_p(\gamma) = e\right\}}{\#\operatorname{Hom}(\Gamma, G_p)}$$

Main ingredients:

- If V is an algebraic variety defined of $\mathbb{Z}/p\mathbb{Z}$ for all p, then $\#V(\mathbb{Z}/p\mathbb{Z}) \approx p^{\dim(V)}$.
- By Huber's prime geodesic theorem the number of terms is $\sim e^R/R$.

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \quad \longrightarrow \quad 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \leq R\right) \leq \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}: \\ \ell(\gamma)} \leq R} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$
$$= \sum_{[\gamma]} \frac{\#\left\{\varphi_p \in \operatorname{Hom}(\Gamma, G_p); \ \varphi_p(\gamma) = e\right\}}{\#\operatorname{Hom}(\Gamma, G_p)}$$

Main ingredients:

- If V is an algebraic variety defined of $\mathbb{Z}/p\mathbb{Z}$ for all p, then $\#V(\mathbb{Z}/p\mathbb{Z}) \approx p^{\dim(V)}$.
- By Huber's prime geodesic theorem the number of terms is $\sim e^R/R$.

 So

$$\mathbb{P}\left(\operatorname{sys}(X_p) \le R\right) \quad \lesssim \quad \frac{e^R}{Rp}$$

Theorem [Liu–P. '23]: Let $G_p = SL(2, \mathbb{Z}/p\mathbb{Z})$ then, as $p \to \infty$,

$$\mathbb{P}\left(\operatorname{sys}(X_p) \ge \left(\frac{1}{3} + o(1)\right) \cdot \log(g)\right) \longrightarrow 1.$$

<u>Proof sketch:</u> $\Gamma = \pi_1(X)$

$$\mathbb{P}\left(\operatorname{sys}(X_p) \leq R\right) \leq \sum_{\substack{[\gamma] \in \Gamma^{\Gamma}: \leq R\\\ell(\gamma)}} \mathbb{P}\left(\gamma \in \ker(\varphi_p)\right)$$
$$= \sum_{[\gamma]} \frac{\#\left\{\varphi_p \in \operatorname{Hom}(\Gamma, G_p); \ \varphi_p(\gamma) = e\right\}}{\#\operatorname{Hom}(\Gamma, G_p)}$$

Main ingredients:

- If V is an algebraic variety defined of $\mathbb{Z}/p\mathbb{Z}$ for all p, then $\#V(\mathbb{Z}/p\mathbb{Z}) \approx p^{\dim(V)}$.
- By Huber's prime geodesic theorem the number of terms is $\sim e^R/R$.

 So

$$\mathbb{P}(\mathrm{sys}(X_p) \le R) \quad \lesssim \quad \frac{e^R}{Rp}$$

which tends to 0 when

$$R \le (1 - \varepsilon) \cdot \log(p) \approx (1 - \varepsilon) \cdot \log(\#G_p)/3 \approx (1 - \varepsilon) \cdot \log(\operatorname{genus}(X_p))/3$$

Lemma: If $X \in \mathcal{M}_g$, then

 $\operatorname{diam}(X) \ge (1 + o(1)) \cdot \log(g).$

Lemma: If $X \in \mathcal{M}_g$, then

 $\operatorname{diam}(X) \ge (1 + o(1)) \cdot \log(g).$

Additive constant improvement by [Bavard '96]

Lemma: If $X \in \mathcal{M}_g$, then

 $\operatorname{diam}(X) \ge (1 + o(1)) \cdot \log(g).$

Additive constant improvement by [Bavard '96]

Theorem [Budzinski–Curien–P. '21]:

$$\lim_{g \to \infty} \frac{\min\{\operatorname{diam}(X); \ X \in \mathcal{M}_g\}}{\log(g)} = 1.$$

Lemma: If $X \in \mathcal{M}_g$, then

 $\operatorname{diam}(X) \ge (1 + o(1)) \cdot \log(g).$

Additive constant improvement by [Bavard '96]

Theorem [Budzinski–Curien–P. '21]:

$$\lim_{g \to \infty} \frac{\min\{\operatorname{diam}(X); \ X \in \mathcal{M}_g\}}{\log(g)} = 1.$$

 $\underline{\operatorname{Proof}}$ sketch: A random construction:

 $S_{g,a}$: random gluing of 2g - 2 copies P_a with twist 0.

Goal: For every $\varepsilon > 0$, there exists an a > 0 such that:

$$\mathbb{P}\Big(\operatorname{diam}(S_{g,a}) \le (1+\varepsilon) \cdot \log(g)\Big) \stackrel{g \to \infty}{\longrightarrow} 1.$$

Goal: For every $\varepsilon > 0$, there exists an a > 0 such that:

Two inputs:

• (Probabilistic) around "most" copies of P_a , $S_{g,a}$ "looks like" T_a up to depth $\approx \sqrt{g}$

Goal: For every $\varepsilon > 0$, there exists an a > 0 such that:

Two inputs:

- (Probabilistic) around "most" copies of P_a , $S_{g,a}$ "looks like" T_a up to depth $\approx \sqrt{g}$
- (Geometric) $m_0 \in T_a$ a midpoint, control exponential growth of

 $N_a(R) = \#\{m \in T_a \text{ midpoint}; \ d(m, m_0) \le R\}$

as $R \to \infty$.

Geometry: Γ_a reflection group generated by the reflections in the sides of length a/2 of H_a

Geometry: Γ_a reflection group generated by the reflections in the sides of length a/2 of H_a

[Patterson '88, McMullen '98]

$$\# \left(\Gamma_a \cdot x_0 \cap B(0, R) \right) \sim \operatorname{cst.}_a e^{\delta_a R} \quad \text{as } R \to \infty$$

and $\delta_a \to 1$ as $a \to \infty$.

Finishing the proof:

• Given any two pairs of pants $P, P' \in S_{g,a}$, with high probability, there are $\gg g^{1/2+\varepsilon}$ distinct pairs of pants at distance $\lesssim \frac{1}{2\delta_a} \log(g)$

Finishing the proof:

- Given any two pairs of pants $P, P' \in S_{g,a}$, with high probability, there are $\gg g^{1/2+\varepsilon}$ distinct pairs of pants at distance $\lesssim \frac{1}{2\delta_a} \log(g)$.
- The probability that none of the pairs of pants "close" to P are neighbors of those "close" to P' is $o(g^{-3})$.

Finishing the proof:

- Given any two pairs of pants $P, P' \in S_{g,a}$, with high probability, there are $\gg g^{1/2+\varepsilon}$ distinct pairs of pants at distance $\lesssim \frac{1}{2\delta_a} \log(g)$.
- The probability that none of the pairs of pants "close" to P are neighbors of those "close" to P' is $o(g^{-3})$. So, with probability $1 o(g^{-3})$, P and P' are at distance $\leq \frac{1}{\delta_a} \log(g)$.

Finishing the proof:

- Given any two pairs of pants $P, P' \in S_{g,a}$, with high probability, there are $\gg g^{1/2+\varepsilon}$ distinct pairs of pants at distance $\lesssim \frac{1}{2\delta_a} \log(g)$.
- The probability that none of the pairs of pants "close" to P are neighbors of those "close" to P' is $o(g^{-3})$. So, with probability $1 o(g^{-3})$, P and P' are at distance $\leq \frac{1}{\delta_a} \log(g)$.
- Sum over the $\leq g^2$ pairs of parts of pants.

Thank you for your attention!