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Probabilistic methods in hyperbolic geometry

Extremal problems:

diam(X)

sys(X)

Y

Definition: X a closed hyperbolic d-manifold.

• The systole: the length of the shortest closed geodesic and the kissing number: the number of geodesics realizing it,

• the diameter:
diam(X) = max{d(x, y); x, y ∈ X},

• the Cheeger constant (or isoperimetric constant):

h(X) = inf

{
vold−1(∂Y )

vold(Y )
;

Y ⊂ X submanifold
vol(Y ) ≤ vol(X)/2

}
,
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• the diameter:
diam(X) = max{d(x, y); x, y ∈ X},

• the Cheeger constant (or isoperimetric constant):

h(X) = inf

{
vold−1(∂Y )

vold(Y )
;

Y ⊂ X submanifold
vol(Y ) ≤ vol(X)/2

}
,

• the spectral gap: the smallest non-zero eigenvalue of ∆ = −div ◦ grad : C∞(X) → C∞(X) and its multiplicity.
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Extremal problems:

Fix the dimension d ≥ 2.

Hyperbolic packing and kissing number problems:

max{sys(X); vol(X) ≤ v} and max{kiss(X); vol(X) ≤ v} ?

Covering problem:
min{diam(X); vol(X) ≥ v} ?

Isoperimetric problem:
sup{h(X); vol(X) ≥ v} ?

Spectral problems:
sup{λ1(X); vol(X) ≥ v} and max{m1(X); vol(X) ≤ v} ?
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Lots of previous work: Huber ’74, Cheng ’75, Huber ’76, Buser ’77, Huber ’80, Yang–Yau ’80, Jenni ’84, Burger Colbois
’85, Brooks ’88, Burger–Buser–Dodziuk ’88, Colbois–Colin-de-Verdière ’88, Burger ’90, Schmutz ’93, Schmutz ’94, Buser–
Sarnak ’94, Bavard ’96, Bavard ’97, Schmutz-Schaller ’97, Adams ’98, Hamendstädt ’01, Hamenstädt–Koch ’02, Kim–Sarnak
’03, Casamayou-Boucau ’05, Katz–Schaps–Vishne ’07, Otal ’08, Gendulphe ’09, Otal–Rosas ’09, Parlier ’13, Strohmaier–
Uski ’13, Fanoni–Parlier ’15, Gendulphe ’15, Cook ’18, Petri–Walker ’18, Petri ’18, Hide–Magee ’21, Jammes ’21, Bonifa-
cio ’21, Kravchuk–Mazac–Pal ’21, Wu–Xue ’21, Lipnowski–Wright ’21, Fortier Bourque–Rafi ’22, Magee–Naud–Puder ’22,
Anantharaman–Monk ’23, and many others.

Known maximizers:

Systole Kissing number λ1 m1

genus 2 Bolza surface Bolza surface Conjecture: Conjecture:
[Jenni ‘84] 24, [Schmutz ’94] Bolza surface Bolza surface

genus 3 Conjecture: Conjecture: Conjecture: Klein quartic
Picard curve Picard curve Klein quartic [Fortier Bourque

–P. ‘24+]

higher genus Local maximizers
[Schmutz ’99]
[Hamenstädt ‘01]
[Fortier Bourque
–Rafi ‘22]

The Bolza surface

The Klein quartic
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The systole:

Facts: the moduli space Mg =

{
closed orientable hyperbolic

surfaces of genus g

}/
isometry is a (6g − 6)-dimensional orbifold.

• The systole admits a maximum on Mg for all g ≥ 2 [Mumford ’71].

• Moreover, it’s a topological Morse function [Akrout ’03].
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The systole:

Facts: the moduli space Mg =

{
closed orientable hyperbolic

surfaces of genus g

}/
isometry is a (6g − 6)-dimensional orbifold.

• The systole admits a maximum on Mg for all g ≥ 2 [Mumford ’71].

• Moreover, it’s a topological Morse function [Akrout ’03].

Lemma: Let X ∈ Mg. Then

sys(X) ≤ 4 · arcsinh(
√
g − 1)

g→∞
= 2 log(g) + 2.772588 . . .+ o(1)

Proof: take x ∈ X

The open disk Dsys(X)/2(x) is isometric to a disk of the same radius in the hyperbolic plane. So:

2π(cosh(sys(X)/2)− 1) = area(Dsys(X)/2(x)) ≤ area(X) = 4π(g − 1).

□
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The systole:

Facts: the moduli space Mg =

{
closed orientable hyperbolic

surfaces of genus g

}/
isometry is a (6g − 6)-dimensional orbifold.

• The systole admits a maximum on Mg for all g ≥ 2 [Mumford ’71].

• Moreover, it’s a topological Morse function [Akrout ’03].

Lemma: Let X ∈ Mg. Then

sys(X) ≤ 4 · arcsinh(
√
g − 1)

g→∞
= 2 log(g) + 2.772588 . . .+ o(1)

[Bavard ’96]:

sys(X) ≤ 2arccosh

(
1

2 sin(π/(12g − 6))

)
g→∞
= 2 log(g) + 2.68353 . . .+ o(1)

[Fortier Bourque–P ’23]:

sys(X)
g→∞
≤ 2 log(g) + 2.409 . . .+ o(1)
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[Fortier Bourque–P ’23]:
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Open question: Does

lim
g→∞

max{sys(X); X ∈ Mg}
log(g)

exist?

[Brooks ’88, Buser–Sarnak ’94]

lim sup
g→∞

max{sys(X); X ∈ Mg}
log(g)

≥ 4

3

and the limit infimum is strictly positive.

[Katz–Sabourau ’24]

lim inf
g→∞

max{sys(X); X ∈ Mg}
log(g)

≥ 19

120
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Random constructions? with Mingkun Liu

Bad news: In the “usual models”, the systole converges to a finite random variable [P. ’17, Mirzakhani–P. ’19,
Magee–Naud–Puder ’21, Puder–Zimhoni ’22]

Theorem [Liu–P. ’23]: There are models that show logarithmic growth.

Corollary:

lim inf
g→∞

max{sys(X); X ∈ Mg}
log(g)

≥ 2

9

Proof idea: Randomly build a surface Xg ∈ Mg with

sys(Xg) ≥
(
2

9
+ o(1)

)
· log(g).

Based on random triangulations combined with ideas inspired by graph theory [Linial–Simkin ’21]. □
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Set up: X a closed hyperbolic surface and (Gn)n sequence of finite groups. Write X = Γ\H2, such that Γ ≃ π1(X). Take

φn ∈ Hom(Γ, Gn) =

{
A1, B1, . . . , Ag, Bg ∈ Gn;

g∏
i=1

[Ai, Bi] = e

}

uniformly at random. Get a random regular cover

Xn = ker(φn)\H2 → X.

Analogous model to random Cayley graphs [Gamburd–Hoory–Shahshahani–Shalev–Virág ’07]

Theorem [Liu–P. ’23]: Let Gp = SL(2,Z/pZ) then, as p → ∞,

P
(
sys(Xp) ≥

(
1

3
+ o(1)

)
· log(g)

)
−→ 1.

Open problem: Is a similar statement true for symmetric groups?
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Theorem [Liu–P. ’23]: Let Gp = SL(2,Z/pZ) then, as p → ∞,

P
(
sys(Xp) ≥

(
1

3
+ o(1)

)
· log(g)

)
−→ 1.

Proof sketch: Γ = π1(X)

P (sys(Xp) ≤ R) ≤
∑

[γ]∈ΓΓ:
ℓ(γ)

≤R

P (γ ∈ ker(φp))

=
∑
[γ]

# {φp ∈ Hom(Γ, Gp); φp(γ) = e}
#Hom(Γ, Gp)

Main ingredients:

• If V is an algebraic variety defined of Z/pZ for all p, then #V (Z/pZ) ≈ pdim(V ).

• By Huber’s prime geodesic theorem the number of terms is ∼ eR/R.

So

P (sys(Xp) ≤ R) ≲
eR

Rp

which tends to 0 when

R ≤ (1− ε) · log(p) ≈ (1− ε) · log(#Gp)/3 ≈ (1− ε) · log(genus(Xp))/3

□
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The diameter:

Lemma: If X ∈ Mg, then
diam(X) ≥ (1 + o(1)) · log(g).

Additive constant improvement by [Bavard ’96]

Theorem [Budzinski–Curien–P. ’21]:

lim
g→∞

min{diam(X); X ∈ Mg}
log(g)

= 1.

Proof sketch: A random construction:

a Pa

a

a Paa a

a a

aa Pa

Sg,a : random gluing of 2g − 2 copies Pa with twist 0.
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)
g→∞−→ 1.



Probabilistic methods in hyperbolic geometry

Goal: For every ε > 0, there exists an a > 0 such that:

P
(
diam(Sg,a) ≤ (1 + ε) · log(g)

)
g→∞−→ 1.

Two inputs:

• (Probabilistic) around “most” copies of Pa, Sg,a “looks like” Ta up to depth ≈ √
g



Probabilistic methods in hyperbolic geometry

Goal: For every ε > 0, there exists an a > 0 such that:

P
(
diam(Sg,a) ≤ (1 + ε) · log(g)

)
g→∞−→ 1.

Ta

Two inputs:

• (Probabilistic) around “most” copies of Pa, Sg,a “looks like” Ta up to depth ≈ √
g

• (Geometric) m0 ∈ Ta a midpoint, control exponential growth of

Na(R) = #{m ∈ Ta midpoint; d(m,m0) ≤ R}

as R → ∞.
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Geometry: Γa reflection group generated by the reflections in the sides of length a/2 of Ha

Ha

[Patterson ’88, McMullen ’98]

#
(
Γa · x0 ∩B(0, R)

)
∼ cst.ae

δaR as R → ∞

and δa → 1 as a → ∞.
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≲ 1

2δa
log(g)



Probabilistic methods in hyperbolic geometry

Finishing the proof:

• Given any two pairs of pants P, P ′ ∈ Sg,a, with high probability, there are ≫ g1/2+ε distinct pairs of pants at distance
≲ 1

2δa
log(g).

• The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P ′ is o(g−3).



Probabilistic methods in hyperbolic geometry

Finishing the proof:

• Given any two pairs of pants P, P ′ ∈ Sg,a, with high probability, there are ≫ g1/2+ε distinct pairs of pants at distance
≲ 1

2δa
log(g).

• The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P ′ is o(g−3). So, with
probability 1− o(g−3), P and P ′ are at distance ≲ 1

δa
log(g).



Probabilistic methods in hyperbolic geometry

Finishing the proof:

• Given any two pairs of pants P, P ′ ∈ Sg,a, with high probability, there are ≫ g1/2+ε distinct pairs of pants at distance
≲ 1

2δa
log(g).

• The probability that none of the pairs of pants “close” to P are neighbors of those “close” to P ′ is o(g−3). So, with
probability 1− o(g−3), P and P ′ are at distance ≲ 1

δa
log(g).

• Sum over the ≤ g2 pairs of paris of pants.
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Thank you for your attention!


